

Towards Articulated Mobility and Efficient Docking for the DuAxel Tethered Robot System

Patrick McGarey Ph.D.

William Reid Ph.D.

Issa Nesnas Ph.D.

Motivation: Extremely Steep Environments

Motivation: Axel Rovers for Extreme Terrain

J. Matthews and I.Nesnas, "On the design of the Axel and DuAxel rovers for extreme terrain exploration" (2012)

Challenges: Anchoring

Axel's finite tether length imposes landing site and anchoring constraints

Option 1) Lander as Anchor

Landing site: ~100m of target

Anchor: permanent

Application: the Moon

Option 2) Mobile Anchoring

Landing site: ~kms from target

Anchor: mobile

Application: Mars

To the Moon...

~ 50 m

Images: ASU LROC

To the Moon...

To Mars...

- RSL: Recurring Slope Lineae observed seasonally active slope features
- Location: Mars, craters walls, >100m from crater edge
- Instrumentation: Dielectric probe to look for evidence of liquid brines

Related Work: Prior DuAxel System

J. Matthews and I.Nesnas, "On the design of the Axel and DuAxel rovers for extreme terrain exploration" (2012)

Related Work: Zoë Articulated Mobility

Wagner et al. "Design and Control of a Passively Steered Dual Axle Vehicle" (2005)

DuAxel: Design

- Articulated Mobility
- Sit/Stand Functionality
- Passive Anchoring
- Redundant Axel

DuAxel: Design

- Docking Mechanism
- Passive Alignment
- Modular Avionics

DuAxel: Mobility Modeling

DuAxel: Mobility

P.McGarey et al., "Towards Articulated Mobility and Efficient Docking for the DuAxel Tethered Robot System" (IEEE Aerospace, 2019)

DuAxel: Docking

P.McGarey et al., "Towards Articulated Mobility and Efficient Docking for the DuAxel Tethered Robot System" (IEEE Aerospace, 2019)

DuAxel: Sit/Stand

P.McGarey et al., "Towards Articulated Mobility and Efficient Docking for the DuAxel Tethered Robot System" (IEEE Aerospace, 2019)

Future Work

- End-to-end sit/stand mobility tests
- Automated docking/undocking
- Visual navigation
- active anchoring for rocky terrain

jpl.nasa.gov

Contact: patrick.mcgarey@jpl.nasa.gov